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1. Introductory Comments

This document reports the work completed on the NASA research grant NAG-1-612,
entitled "Response of Joint-Dominated Space Structures.,” The work falls into two
categories: 1) developing an efficient method for calculating the transient response
of a nonlinear system such as a large joint-dominated space structure and 2)
investigating the effect of gravitational loading and joint scaling on the dynamic
response of model structures. The results of the investigations on these two topics
are reported in Section 2 and Section 3, respectively.
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Abstract

A new, efficient linearization method is presented for calculating the transient
response of nonlinear systems due to initial disturbances. The method is an
extension of the describing function approach in which the steady-state response of
the system is calculated by representing the nonlinear element, typically joints in the
the case of space structures, by impedances which are functions of the amplitude of
response. Thus, the problem of solving the differential equation for the steady-state
response becomes one of solving a set of noﬁlinear algebraic equations involving the
steady-state amplitudes and phases of the system. It is shown that for the transient
case the steady-state impedances can be averaged over the range of response in
order to provide equivaient values of stiffness and damping that, for a given set of
initial displacements, may be treated as being constant for purposes of calculating
system response. .

Single-degree-of-freedom systems are used first to demonstrate the method and
then to develop an approach for optimizing the joint’'s characteristics so as to
minimize transient response times. The use of this method for response estimation
and optimization in muiltiple-degree-of-freedom systems is investigated subsequently.

Nomenclature

B amplitude of x (slowly varying with time)

c c,. c viscous damping

Cott effective value of instantaneous system damping
f force from nonlinear friction element

Fc, F fundamental Fourier coefficients of fn



k, ki. K, Kq stiffness

kd stiffness of nonlinear friction element

ken effective value of instantaneous system stiffness
m, m, M mass

N normal load on friction contact

t time

At half period

u eigenvectors

X, X, X displacements

Y. Y, modal displacements

Greek

Y, eigenvalues of linearized system

M coefficient of friction

I phase lag

6 ot - ¢

6" 6 value at which nonlinear element transitions from stick to slip
w frequency

oy 0 natura! frequencies

{ fraction of critical damping

Superscripts

. nondimensionalized quantities
() quantities averaged over a8 range of response
Additional

Bold type indicates a vector or matrix quantity



Introduction

An important problem related to the design of space structures is that of predicting
their dynamic response. This process is particularly difficult when dealing with
structures that contain a large number of joints that exhibit nonlinear, hysteretic
behavior. For example, this may be the case for prefabricated truss structures that
are designed to collapse into a dense package for transportation to orbit. The truss
is then expanded in space by utilizing joints that are especially designed to rotate
and lock into place. The dynamic response of such structures is said to be joint
dominated if the amount of damping or the stiffness of the system is strongly
affected by the joints’ behavior. If damping in the system is primarily due to joint
hysteresis then joint behavior controls the amplitude of the steady state response as
well as the rate at which transients decay. Additionally, in some cases, joint
flexibility can significantly reduce the stiffness of the structure, thus reducing its
natural frequencies and altering the associated mode shapes. This paper discusses a
new approach that may be used to efficiently estimate the transient response of such
systems.

The transient response of nonlinear systems is usually calculated by time
integration methods that employ finite differences in time; see, for example, Hughes
[1). This approach has two disadvantages when it is applied to the design of joint
dominated structures. The first is that it is computationally intensive. This would
be especially the case for the type of complex three-dimensional truss structures that
are proposed for space applications since they have a large number degrees of
freedom. Secondly, the problem is nonlinear and, consequently, the solutions lack
generality. For example, the rate of decay of a transient would depend on the
specific magnitude and distribution of the assumed initial displacements and
velocities of the structure. Since the number of degrees of freedom is large, it is
not reasonable to consider all possibie initial conditions. So one difficulty faced by
the design engineer is in trying to select those conditions that are of critical
importance to the design and to simulate the corresponding system response when
there is such a large number of possible cases to consider. Neither the selection nor
the simulation process is particularly feasible if time integration is the only
procedure available for calculating the response of the system.

In this paper an approximate method is developed for estimating the transient
response of noniinear systems in terms of linearized modes of response. Its
advantages are that it is computationally more efficient than the time integration
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method and that it is possibie to 4view the design problem in the more traditional
physical terms of modal response. For example, if it is most important to damp the
larger amplitude, low frequency response one can easily focus on that iséue by
isolating the response of the first few linearized modes. Consequently, by utilizing
this approach the design problem should become more tractable. The major drawback
of the approximate method is loss of accuracy. It is our view that both approximate
methods and time integration have their roles in design. Approximate methods
provide efficient tools for performing parametric studies and they supply physical
insights into how to optimize system performance that are not easily inferred from
strictly numerical methods. Time integration provides a method for assessing the
accuracy of the approximate solution for key simulations and for fine tuning the final
design.

in the procedure presented here the nonlinear system is approximated by an
equivalent linear system in which the system parameters are constant over the range
of transient response. The method is an extension of the describing function
approach used to calculate the steady-state harmonic response of nonlinear systems.
In the describing function approach the response is assumed to be essentially
harmonic and the nonlinear element is represented by impedances which depend on
the amplitude of response. As a result, the problem of solving the differential
equation for the steady-state response becomes one of solving a set of nonlinear
algebraic equations for the steady-state amplitudes and phases associated with the
various degrees of freedom of the system. In the transient case considered here the
steady-state impedances are averaged over the range of response in order to provide
equivalent values of stiffness and damping that, for a given set of initial conditions,
may be treated as constants for purposes of calculating system response. We refer
to this approach as the Amplitude Averaging (AA) Method. Once equivalent
parameters are identified for the system, conventional methods can be employed for
analyzing the resuiting linear system. Related studies have been summarized, for
instance, by Ilwan and Gates [2].

The AA Method is derived from an efficient time integration procedure presented
by Sinha and Griffin [3] in which single time steps were used to step from one
peak of the oscillation to the next. Their approach in turn, was based on the idea
that the response may be approximated as a sinusoid in which the amplitude and
phase vary slowly with time (see, for example, Caughey [4]).

In the first part of this paper the AA Method is illustrated by applying it to a



singie-degree-of-freedom (SDF) system exhibiting the bilinear hysteretic behavior
typically associated with Coulomb friction. While the method is not restricted to
this type of nonlinearity this behavior was selected for analysis because it is
representative of the type of severe nonlinearity that occurs in actual joints. A half
cycle method similar to that used by Sinha and Griffin is presented in order to
illustrate the linearization process and in order to develop "instantaneous” values of
the nonlinear element’'s stiffness and damping. The instantaneous values of the
element’'s parameters, which effectively characterize the joint's properties at a given
amplitude of response, are then averaged over 8 range of amplitudes in order to
calculate the constant stiffness and damping values used in the AA Method.' Since
an equivalent, constant damping has been determined for the system it may be used
to select joint characteristics (the friction slip load in this example) so as to
maximize average joint damping and minimize transient response times. in the
second part of the paper a general approach that may be used for multiple-degree-of-
freedom (MDF) systems is given and applied to the two body problem. In each case,
the accuracy of the approach is assessed by comparing results from the approximate
method with those obtained using standard time integration methods.

Single Degree of Freedom Systems (SDF)
In order to demonstrate the AA Method, we develop & solution for the bilinear

hysteretic SDF system depicted in Figure 1. The equation of motion for the system
is

mX +cx + kx = = f (1)
n

where fn is the nonlinear force from the friction element and the dots represent
differentiation with respect to time. During oscillation, the friction joint remains
locked until the magnitude of the spring force, |k d(x-y)l, equals the friction force
#N. The joint then slips with a constant resistive force of magnitude xN until the
mass reaches an extremum of oscillation, at which point the joint locks up again.
The magnitude of the relative displacement (x-y) required to cause slip is designated
8s X . where

1ln the example used here to demonstrate the approach, the instantaneous joint properties are calculated
snalytically. Actual joint properties may be calculated from laboratory tests that measure the joint's steady state
hysteresis curves. See Crawley [5] for an example of steady state joint characterization.
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The Half-Cycle Method

If the transient response is approximately a sinusoid that has an amplitude and
phase which vary slowly with time, then over a limited time span it may be
approximated as x = B cosf, where § = ot - ¢. We assume that the nonlinear force
fn exhibits the same periodicity. Expressing fn in a Fourier series, we obtain (see
Menq and Griffin, [6])

f = FC(B) cosf + Fs(B) sind + (higher harmonics) (3)

where, for the case of Coulomb friction considered;

k B 1
- L [ 3 - _ N »*
F B = - [ 6*®) - - sin26"@) ] (@)

A R G (5)
24N
" -1 # "
= - < <
6%B) = cos ( 1 5 ) 0<s6"< g« (6)

in the case of experimental joint data, the Fourier coefficients can be calculated
numerically from hysteresis curves using numerical integration.

If we keep only the fundamental harmonics and truncate the expression (3) after the
first terms, we can express fn as

£ (B) .
s

F (8)
e £ x + X (7)

f
n B wB

Thus (1) becomes,



F . F
X - -5 < =
mx+(c wB)x+(k+B)x0 (8)
or,
mx + ceH(B)x + ke”(B)x =0 (9)
where € st and keff are defined in a manner consistent with (8) and because they

pertain to a specific amplitude are referred to as the instantaneous damping and

stiffness of the bilinear spring. Alternatively, we may write (9) as

X+2lux+w?x=0 (10)
n n

where { and w are both functions of B

c .. (B)
LB = 7 etf (11)

174
(m k_, (B)

k (B)
w (B) = (—'”— )”2 (12)
n m

The damped natural frequency of this system may be similarly defined as

(1 - c%BMk_, Bl 1/
wyB) = ( — ) (13)

It is observed that during transient oscillation of the nonlinear system, the response
is similar to the decaying sinusoid seen in linear analysis. It is reasonable to
assume that the motion of the nonlinear system from one extremum of oscillation to
the next extremum is representable as the decay of a linear system over a half-cycle.
As an example, we consider a system decaying from initial conditions of some
initial displacement Bo and zero initial velocity. Let Bi denote the amplitude of the
i™ extremum (occuring at time ti) and B, , denote the amplitude of the next extremum
(at time t, ’). Then from linear theory, the time elapsed between one extremum and

the next is approximately



At =t  -t= B} (14)
d i
and the relationship between successive peaks is
—(in/n - {iz)uz
B,,=-Be (15)

Given the initial amplitude Bo, we can efficiently estimate successive extrema and
the time increments at which they occur from (14) and (15). Since the extrema occur
each half cycle, we refer to this method as the Half-Cycle Method.

This Half-Cycle Method is an efficient way of approximating a numerical time
integration to find extrema of transient oscillation. Numerical simulations of SDF
systems show that this method is accurate for nonlinear systems in which ¢ = kdl(k +
kd) < 0.5 and provides a reasonable approximation for the amplitude of response for
¢ > 0.5. The Half-Cycle Method results were compared to more accurate solutions
generated by fourth order Runge-Kutta time integration. The comparison of the half
cycle estimates to the numerically generated “exact” solutions is shown in Figures
2a-d where the Half-Cycle estimates of the extrema of response are shown as points
{the exponential decay envelopes pictured are a result of the new Amplitude
Averaging Method and will be discussed later). For nonlinearities of ¢ > 0.5, the
system experiences an offset that is not accounted for in the Half-Cycle Method.
However, the peak-to-peak amplitude estimates are approximated reasonably well
despite this offset. It may be observed that for these simulations this approach
yields conservative estimates of system behavior in that it overestimates the
amplitudes of response.

Amplitude Averaging Method

We now introduce a new linearization called the Amplitude Averaging (AA) Method.
In this approach, the half-cycle values of damping and stiffness are averaged over
the entire response range of interest. Consequently, while these average values are
nonlinear functions of the initial displacement, they are constants as far as the
transient response analysis is concerned.

The AA Method is also based on equations (3) through (6). Linear, constant
parameters are derived by averaging c . and k . from (3) over the nonlinear range
of oscillation, i.e., ‘
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[o]
_ _ ) S -FS(B)
e (Bo) =c + ce(Bo) =c+ ™ dB/(Bo - xcm) (16)
xcrit
B
[<]
_ - . S -FC(B)
ke” (Bo) =k + ke(Bo) = k + 5 dB/(Bo - xcm) {17)

crit

where w in (16) is given by (12). After averaging, (8) becomes
mX +{c + T B +(k+k(BNx=0 (18)
e © e ©

For the example of Coulomb friction, the analysis can be simplified by expressing
. the, averaged properties in terms of several nondimensional parameters: (normalized
quantities are denoted by a # superscript)

ke(Bo) = kd ke(Bo) (19)

- co - % *

C.(Bo) = :_;r—(B—r) (:e (B° ) (20)
o

where
c = 2mw = 2(m k)2 (21)
-] [} d
— - k - % - 172
w(B)=(—+k(B)) (22)
° k e o
d
and
B B k
B * . o o d (23)
° X . pN
crit

E."B;) and 'EJB;) are the nondimensional averaged stiffness and damping of the
friction element. These quantities are of particular interest because their values may
be calculated in terms of the single nondimensional parameter, Bo', the initial
displacement divided by the displacement required for siip to occur.



For Coulomb friction from (4), (17), and (19), Ee" is given by

L

B
ke (Bo ) = m S{ 6(8" - 0.5 sin[26(B )] } as” (24)
where
o*, 2 *
cosG(B)=‘l-E¢. B" 2 1)

and need be calculated only once. The nondimensional frequency @ is then obtained
from (12), (17), and (19) as

k
Pl ( = kS 6" )”2 ‘ (25)
d

Lastly, from (5), (16), and (20), the average nondimensional damping is approximated
as '

ACAE '(B -1)5{—.-(8) }ds (26)

which, upon integration, yields

(I FoAEE 1){ +tn " -1} (2

Note that the parameters are averaged only over the range in which they exhibit
nonlinear behavior. The system is linear for Bo' less than one and the response can
be caiculated using standard methods in that regime.

The AA Method gives a linear estimate of the nonlinear behavior of the system.
Results from the AA linearized systems are shown in Figures 2a-d as exponential
decay envelopes, and are plotted with the Half Cycle Method and Runge Kutta resuits
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for comparison. As with the Half-Cycle Method, we again see conservative
estimates of system amplitudes and again the estimates are more precise for weakly
nonlinear systems.

An important result of the AA Method is shown in Figure 3. This figure shows the
normalized quantities k:(Bo“), c:(Bo'), Ee“(Bo'), and E:(Bo') in terms of the
nondimensional initial displacement Bo'. It is observed that there are optimal system
configurations which maximize either instantaneous or average damping in the system.
These optimality conditions depend only on the nondimensional initial displacement
Bo'. Recall from (23) that Bo' is dependent on the system parameters. Thus, by
adjusting just one of these parameters, say, normal load for example, it is possibile
to optimally damp an existing system. For example, the points A, B, and C on the
average damping curve can be thought of as three systems which are identical except
for the tightness of the friction joint as indicated by the normal load (normal load =
N, NA > NB > Nc). Comparing the lineer average damping terms provided by the AA
Method for the three systems, it is seen that system B, with normal load NB, has the
highest value of average damping and is an optimally damped system for this set of
basic parameters. The optimality of system B in an average sense was confirmed by
fourth order Runge-Kutta simulations. The results for the three systems A, B, and C
are shown in Figure 4, where successive extrema have been connected to form an
envelope of decay. The normal load NB is not simply the iargest or smaliest normal
load which could be applied, nor is it equal to the load which would be required to
optimally damp only the first oscillatory swing in the transient motion (this normal
load would correspond to the conditions of system D of Figure 3 which maximizes
instantaneous damping).

Runge-Kutta simuiations confirm the optimality results which were readily provided
by the AA Method. We observe, however, that the optimality result would not have
been nearly so obvious if an exact time integration alone had been used to
investigate this transient behavior. It is also noted that the AA Method provides
general results in that it allows for parameter-based comparisons of different
systems. Numerical time integration methods lack this generality, yielding instead
resuits which are case-specific and thus more difficult to interpret when comparing
systems.

The AA Method leads to systems which are optimized, in an averaged sense, over
the entire range of nonlinear behavior. The Half-Cycle Method may be used to
generate systems which are optimal in a “first swing” sense. It is also possible to
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optimize the system over other select ranges of nonlinear behavior. This is done by
averaging the € e and ke" equations over the particular range of concern, resulting in
a new curve for E:(Bo*). The optimal normal load (or other parameter) is the one
which adjusts the nondimensional initial condition so as to maximize the value of
this new Ee'(Bo'). The linearizations described so far make it possible to optimize

the nonlinear system, in an average sense, over any range of nonlinear behavior.

The Amplitude Averaging Method has vyielded a general result whiéh was not
obvious from numerical time integrations. In the next section, the application of the
AA Method to multiple mass systems is developed and it is shown that the
principles of generality-of-results and optimal damping still apply, only that they now
apply in a modal sense.

Muiltiple Degree of Freedom Systems

The transient analysis of muiltiple-degree-of-freedom (MDF) nonlinear systems using
the AA Method can be accomplished by representing the system in modal form in
terms of a sum of SDF nonlinear systems. The SDF components are linearized
separately and are then combined to form a linear representation of the MDF system.

In the linearization process, a nonlinear friction damper will be replaced by linear
elements which approximate its behavior, as depicted in Figure 5. The original 2DF
system incorporates a friction damper as a nonlinear element and will serve to
illustrate the application of the Amplitude Averaging Method to MDF nonlinear
systems. The equations of motion for the system may be written in matrix form as

1
Mx + Cx + Kx = - f
n
-1
where
X,
X =
| X2
rm1 0
M=
| 0 m,
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MDF Linearization

in the SDF analysisl we were able to regard the initial amplitude across the friction
damper as the maximum distance that the joint would be stretched during transient
oscillation. In the MDF system, the initial amplitude across the joint is no longer
guaranteed to be the maximum span which the joint experiences. Consequently, the
nonlinear system cannot be linearized by simply considering the isolated friction
damper and how much it is initially displaced. Instead, one must use & modal
approach in the linearization process. .

It is necessary to decouple the nonlinear MDF system of Figure 5 into two SDF
nonlinear systems so that the AA Method may be applied to each of the decoupled
systems separately. Decoupling of linear systems is done routinely (see, for
example, Thomson [7]) while nonlinear systems are not generally amenable to such
analysis. The nonlinear decoupling and moda!l linearizations may be accomplished
with the iterative approach summarized in Appendix A. In this approach, & set of
converged eigenvalues and eigenvectors is obtained and used to form a modal
(decoupled) representation of the nonlinear system. The decoupied systems are
linearized using the AA Method and are transformed back to the original coordinates
to vyield s linear MDF system.

Several approximations are made during the decoupling process. Viscous damping
is generally small and is, therefore, neglected in order to avoid the inconvenience of
dealing with complex eigenvectors. The complex formulation could be pursued in
order to increase the overall sccuracy of the linearization and estimation scheme.
Another assumption made in the analysis is that each modal friction joint operates
independently. This approximation significantly simplifies the calculations, but
introduces an additional source of error in those cases where modes interact. This
latter assumption is believed to be responsible for the fact that the modal AA
response estimates are no longer conservative in some instances.
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However, in general the results obtained from the AA Method compare reasonably
well with results from direct time integration. The modal comparisons for two cases
are shown in Figures 6 and 7. where the time integration solutions have been
transformed from the original x coordinates into the converged modal coordinates, Y,
and Yo by using the converged eigenvectors. Overall, the exact modal solutions
(represented by the continuous curves) are seen to be similar in form to decaying
sinusoids centered about a zero equilibrium state. The neatness (symmetry and
sinusoidal appearance) of the exact results indicate that the converged linear
decoupling does in fact represent the nonlinear behavior fairly well, as the response
in x coordinates would transform poorly if the modal representation were not a
reasonable estimate of system response.

Several characteristics of the AA Method as applied to MDF systems are illustrated
in Figures 6, 7, and 8. Firstly, the AA estimates are not conservative in the lowest
mode when both modes are actively slipping.2 Secondly, it was found that the larger
the viscous damping and nonlinearities in a mode, the less “neat” the modal
response looks (this is apparent in Figures 7b and 8b). Thirdly, a MDF system can be
modally optimized in a fashion similar to that used to optimize the SDF system. As
in the SDF case, the correct manipulation of the normal load shifts the
nondimensional modal initial condition to a condition which generates the optimal
{(modal) damping. It is noted that it is not generally possible to optimally damp both
modes simultaneously, as the optimization of one mode results in a detrimental or
non-optimizing shift of the other mode. Figure 6 shows a system which is not
optimally damped in either mode. Figure 7 shows the same system after the normal
load has been adjusted to optimally damp the higher frequency mode (mode 2).
Notice that the results are plotted on different scales in Figures 6 and 7. In Figure
8b, the extrema in the numerical time integration solutions for the non-optimized-
mode 2 and optimized-mode 2 systems have been scaled for direct comparison
(extrema plotted to form decay envelope). From Figure 8b it is obvious that the
optimization has a significant effect on modal response. The same system was
optimized in mode 1 and the results depicted in Figure 8a Note that in this particular
system the friction damping in the first mode was quite small compared to viscous
damping and, consequently, optimizing joint damping had littie impact on first mode
response (an expanded scale was used to show the optimization result more clearly).
The AA optimization results for both modes 1 and 2 were confirmed by Runge-Kutta

zlt was found that it only one mode was sctively slipping the sccuracy of the AA method for MDF systems

was comparsble to that found for SDF systems.
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simulations. Thus, although the modal AA extrema may be nonconservative in some
cases, the AA indication of modal optimality remains accurate in the cases
considered.

The AA Method may thus be used to optimally damp select modes of particular
concern. This is helpful in the design process in that it gives an easy indication of
which systems are optimal in a given situation. In practice‘it may not be possible
to obtain joints with characteristics that exactly correspond to this modeled
optimality, in which case the issue may become one of selecting the most nearly
optimal joint configuration from a variety of available designs.

Conclusion

This paper has discussed the specific application of the Amplitude Averaging
Method to friction damped systems. However, the AA Method is a general
linearization method applicable not only to friction damped systems but also to other
systems which exhibit nonlinear hysteretic behavior.

The AA Method is efficient and can be used to easily establish optimization
conditions, subject to time integration verification. Familiar modal analysis may be
applied to MDF nonlinear systems and systems may be optimized over specific
ranges of nonlinear oscillation. Furthermore, the AA Method can be used to modally
optimize MDF systems in order to suppress system response over specific frequency
ranges.

The AA Method may also be used as a comperison tool in the system design
process. The physical parameters of the system may not be adjustable to the
indicated optimal values. For example, in the case of jointed structures and friction
damping, it is not generally possible to select physical joints with adjustable
{optimizable) normal loads. In this situation the task may be one of selecting joints
from a variety of designs. The AA Method yields the relative averaged damping in
these designs for amplitudes of response which are representative of those
encountered in practice and thus may be employed as a method of comparison in
order to help choose the most nearly optimal design.

The AA Method is an efficient design tool for two reasons. One is that the
method is computationally efficient. In the cases considered in this paper, AA
solutions could be calculated an order of magnitude more quickly than numerical time
integration solutions. In addition, the method provides a system representation in
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terms of linearized modes and, consequently, it becomes relatively easy to establish
optimum system response. Again, it is our view that numerical time integration and
the AA Method are complimentary approaches and that both have their places in the
design of nonlinear systems. The AA Method is a computationally efficient approach
which supplies analytical insight at the expense of accuracy, while the
computationally intensive time integration approach provides verification and fine
tuning of the results for select cases of interest.

References

1. Hughes, Thomas J. R., Finite Element Method, Prentice-Hall, New Jersey,
1987.

2. lwan, W, D. and Gates, N. C., "Estimating Earthquake Response of Simple
Hysteretic Structures,” Journal of the Engineering Mechanics, AJCE, Vol.
105, No. EM3, June 1879, pp. 391-4065.

3. Sinha, A., and Griffin, J. H.,, "Effects of Static Friction on the Forced
Response of Frictionally Damped Turbine Blades,” ASME Journal of .
Engineering for Gas Turbines and Power, Vol. 106, Jan. 1984, pp. 65-69.

4. Caughey, T. K., “"Sinusoidal Excitation of a System With Bilinear
Hysteresis,” ASME Journal of Applied Mechanics, Vol. 27, 1960, pp.
640-643.

5. Crawley, Edward F., “identification of Nonlinear Structural Elements by
Force-State Mapping,” A/AA Journal, Vol. 24, No. 1, Jan. 1986, pp.
155-162.

6. Menqg, C.-H., and Griffin, J. H., “A Comparison "of Transient and Steady
State Finite Element Analyses of the Forced Response of a Frictionally
Damped Beam,” ASME Journal of Vibration, Acoustics, Stress, and Reliability
in Design, Vol. 107, Jan. 1985, pp. 204-210.

7. Thomson, William T., Theory of Vibretions With Applications, Second Ed.,
Prentice-Hall, New Jersey, 1981, pp 132-201.

Acknowledgements

This work was supported by NASA Langley Research Center, Grant No. NAG-1-612-
NAG64, under the direction of Mr. Lucas Horta.



16

A. ITERATIVE METHOD FOR DECOUPLING AND
LINEARIZING A NONLINEAR MDF SYSTEM

The goal here is to represent the friction joint by equivalent linear elements for a
given set of initial displacements. To this end we must find a modal representation
of the friction element which depends (as in the case of the SDF system) on the
initial modal displacements. It is not possible, however, to calculate the mode
shapes or eigenvectors of the system and find the initial modal displacements unless
we know all the stiffnesses of the system (including those of the friction joint).
This appendix summarizes an iterative procedure for simuitaneously establishing the
eigenvectors and initial modal displacements of the system and the equivalent joint
properties of the friction element.

This method neglects damping in determining the eigenvectors of the system. This
is a reasonable approximation for lightly damped systems. There are seven steps in
the process, which are illustrated by applying them to the two-degrees-of-freedom
(2DF) system of Figure 5.

1. Write the governing equation of the system in matrix form, neglecting
viscous damping, e.g., for the 2DF system of Figure 5

-1
Mx + Kx=f (A.1)
© n 1

where Ko = K.
2. Find the eigenvalues and eigenvectors of the linear part of the system,

momentarily disregarding the nonlinear term fn. Form the matrix of
eigenvectors, U, e.g.,

I(mui £ xiMui eigenvalues )\1.X2

eigenvectors u, = u, = (A.2)

Us= [u,.uzl .. matrix of eigenvectors.

3. Assume x can be represented in terms of modal 